

The Influence of Ground Water Level Conditions on the Stability of Road Slopes with Retaining Walls

Eka Priadi¹, Murad^{2*}

¹Civil Engineering, University Tanjungpura Pontianak, Indonesia ²Mining Engineering, University Tanjungpura Pontianak, Indonesia *Corresponding Author: murad@teknik.untan.ac.id

Received 19th August 2023; Revision 15th September 2023; Accepted 26th September 2023

ABSTRACT

This research was carried out using the P laxis 8.0 finite element method and manual calculations as well as by evaluating the safety factor value. Slope stability analysis using the P laxis program aims to determine the safe value of the slope before and after reinforcement using a cantilever - type retaining wall. Based on the analysis of the P laxis program before the installation of the cantilever retaining wall, in general the condition of the retaining wall on Jalan Ahmad Yani Gg. Batu Mas, Singkawang City experienced a landslide due to the condition of the soil which was classified as having low soil mechanical properties. Slopes with designed cantilever wall reinforcement are considered safer because they have the smallest displacement and settlement values, and meet all slope stability requirements, ie, shear stability is 1.251 > 1.5 (Safe), stability against overturning is 2.415 > 2 (Safe), and bearing capacity is 0.555 < 0.583. The cantilever retaining wall structure uses D16-100 principal reinforcement and D10-100 shrinkage reinforcement.

Keywords: Cantilever Wall, Plaxis 8.0 Program, Safety factor

Copyright © Eka Priadi, Murad This is an open access article under the: https://creativecommons.org/licenses/by/4.0/

INTRODUCTION

A slope is an open ground surface, forming a certain angle to the horizontal axis, or a ground surface that has two different elevations where the ground surface forms an angle [1][2].

A landslide is the collapse of a land mass located on a slope resulting in downward and outward movement of the land mass. Many influencing factors _ stability slope like layered soil conditions, anisotropic soil shear strength, water seepage in the soil and so on [3]. High rainfall conditions are one of the causes of landslides because an increase in the degree of soil saturation can result in an increase in soil pore water pressure so that the effective soil stress decreases and the soil shear strength also decreases.

The Singkawang City area is mostly an area with fairly flat topography, or around 80% with a slope of between 0-8% at an altitude of between 0-12 meters above sea level [4]. The problem that is often faced in Singkawang City is puddles during the rainy season.

The heavy rain in Singkawang City that occurred at the end of August 2022 not only caused flooding, but also landslides [5]. The soil on the slopes consists of clay, silt and sand, making the soil unstable and not very strong when it rains. Water that enters this type of soil will

become unstable and weaken, causing dynamic loads on the slopes, causing landslides.

The results of field observations due to the high rainfall caused a number of roads in Singkawang City to be flooded, this has become a common experience for the community. Apart from that, the flood also submerged several main roads which provided access for the community. Not only flooding, due to the heavy rain that continues to cause a number of points in Singkawang City to be buried by landslides. Therefore, the high rainfall factor must be taken into account in every planning, implementation of development and maintenance of development results.

The location chosen for Singkawang City was the object of research because of the background of high rainfall which can cause the water level to rise and cause stress on the soil, such as pore water pressure which is one of the causes of landslides [6]. Therefore, the author tries to take a case study in this area to determine the influence of pore water pressure and the reinforcement that can be used.

Based on these problems it is necessary done research which aims to analyze the existing condition of retaining walls, designing the dimensions and stability of retaining walls against the risk of movement, overturning and subsidence manually as well as the value of the safety factor (*safety f actors*) on Jalan Ahmad Yani Gg. Batu Mas based on analysis using the Plaxis V.8.0 computer program.

MATERIALS AND METHODS

Type study This is type study applied from facet its use, where the concepts used tend to be operational And No draft Which abstract [7].

The data required in this research includes:

- a. data N- C PT
- b. Results photo/drawing location cliff landslide road _
- c. Location map
- d. Piece transverse road place happen landslide
- e. Vehicle load and movement land .

Layer data land obtained from two locations point retrieval of results data drilling, point CPT.01 and point CPT. 0 2 Jalan Ahmad Yani Gg. Batu Mas, Singkawang City (figure 1).

Figure 1: Data Collection Locations CPT.01 and CPT 02

The data analysis techniques used in this research include field data and laboratory data to obtain: 1. Active Earth Pressure

Rankine theory is used to calculate the active earth pressure value on lateral land, which is divided into the active earth pressure value on flat land and the active earth pressure value on sloping land. Use the formula below to calculate the active ground surface value and slope coefficient. Ka value on land flat is expressed in Equation 1 as follows:

Information:

 φ = Soil friction angle (°) Ka = Active soil coefficient

2. Passive Earth Pressure

Passive earth pressure for lateral soil is calculated in the same way as active earth pressure using Rankine theory, which is divided into passive earth pressure for flat soil and passive earth pressure for sloping soil. The calculation procedure uses the Rankine method

according to the formula below. The Kp value for flat land is expressed in Equation 2 as follows:

Information: a = Soil friction

 φ = Soil friction angle (°) Kp = Passive soil coefficient

3. Stability of antilevered Earth Retaining Walls _ _ _ Against Rolling Force

Rolling resistance is the stability that is considered when the soil is overturned due to the lateral pressure of the embankment behind the retaining wall. The value of structural stability against the possibility of overturning is calculated using the following equation 3:

$$FS guling = \frac{\Sigma MW}{\Sigma Mguling} = \frac{W.b1}{\Sigma Pah.h1 + \Sigma pav.B} \ge 2 \dots (3)$$

Information:

 $\sum Mw = anti- rolling moment (kNm)$ $\sum Mgl = magnitude of moment roll (kNm)$ W = weight of soil + weight of retaining wall (kN) B = width of retaining wall (m) $\sum Pah = magnitude of horizontal force (kN)$ $\sum Pav = magnitude of vertical force (kN)$

4. Stability of antilevered Earth Retaining Walls _ _ _ Against Shear Force Shear resistance is the ratio between the retaining force and the compressive force of the retaining wall. The value of structural stability against shear potential is calculated using Equation 4-7 below:

$$FSgeser = \frac{\Sigma Rh}{\Sigma Pah} \ge 1.5 \dots (4)$$

For granular soil (c=0) $\sum Rh = WF$ $= W \tan \delta h \text{ with } \delta h \le \emptyset \dots (5)$ For cohesive soil ($\emptyset = 0$) $\sum x Rh = Ca \cdot B \dots (6)$ For soil $c = \emptyset$ ($\emptyset > ad 0$ and c = 0) $\sum R_h = C \cdot B + W \tan \delta h \dots (7)$ Information: $\sum R_h = \text{ to shear resistance retaining wall}$ W = total mass of soil above wall support and base plate $\delta h = \text{ angle of friction between the soil and the foundation (1/3 to 2/3) } \emptyset$ C = base layer cohesion B = width of retaining wall (m) $\sum Pah = \text{ magnitude horizontal style}$ f = tan δb = friction coefficient of soil and foundation

5. Stability Against Collapse of Soil Carrying Capacity

The load equation for calculating the stability of retaining walls includes the Meyerhof method which is used to calculate inclined and eccentric loads. The following is the carrying capacity formulation from Meyerhof Theory [8]:

qu_{lt} = c.Nc (sc .dcic) + q'.Nq (sq .dq .iq) +
$$\frac{1}{2}\gamma$$
.B.N γ (s γ .d γ .i γ)(8)

with Nc, Nq, N γ are non-dimensional Meyerhof bearing capacity factors which are obtained only from the value of the friction angle in the soil (ϕ). To calculate the shape factor (s= shape), depth (d= depth) and load angle (i= inclination) are displayed in Table 1. The Kp value used by Meyerhof is the Rankine value.

$$Kp = tan^2 \left(\frac{n}{4} + \frac{\varphi}{2}\right)....(9)$$

		<u></u>	
Faktor	Nilai φ	Rumus	
s _c	semua nilai	$s_{e} = 1 + 0.2 \text{ K}_{p} (B'/L')$	
	φ>10	$s_q = s_\gamma = 1 + 0.1 \text{ K}_p(B'/L')$	
$s_q = s_\gamma$	$\phi = 0$	$s_q = s_\gamma = 1$	
d _e	semua nilai	$d_c = 1 + 0.2 (K_p)^{0.5} (D/B)$	
$d_q \!= d_\gamma$	φ>10	$d_q = \ d_\gamma = 1 + 0.1 \ (K_p)^{0.5} (D/B)$	
	$\phi = 0$	$d_q=d_\gamma=1$	
$i_c = i_q$	semua nilai	$i_{e} = i_{q} = \left(1 - \frac{\theta^{\circ}}{90^{\circ}}\right)^{2}$	
iγ	φ >0	$i_{\gamma} = \left(1 - \frac{\Theta^{\circ}}{\phi^{\circ}}\right)^2$	
	$\phi = 0$	$i_{\gamma} = 0$	

Table 1. Shape factors, depth and load angle in Meyerhof theory

The carrying capacity factor values Nc, Nq, N γ from Meyerhof can then be calculated using the following equation:

$Nc = [q-1] cot \phi$	(10)
$Nq = e^{\pi \tan \varphi} \cdot K p$	(11)
$N \gamma = [q - 1] \tan(1.4 \varphi) \dots$	(12)

Safety factor against power failure subgrade support is calculated using The following equation.

Description:

 q_{u} = ultimate carrying capacity q_{max} = structure load pressure

6. Element Method Until Flaxis

the numerical methods developed in numerical analysis is finite elements [8]. The Plaxis program is one of the finite element programs used to implement problems in research this.

Penetration Test Results Using the Sondir Tool (CPT. 01)

DENINE I	INIT AND THE		Chiefe Designation					No	CPT
PENYELI	DIKAN TA	ANAH SUBSID	ENCE PENAHAN	TANAH					
JLN. A. YANI, GG. BATU MAS, KOTA SINGKAWANG, KALIMANTAN BARAT									01
Cone Type Cone Diar Sleeve Dia Sleeve Lee	e/ID meter (cm) ameter (cm ngth (cm)	1	Bi-cone 3,535 3,584 10,395	Elevation (m) Stopped at depth (Ground water leve Testing Date	(m) H (m)	- -6,8 -0,50 5 Dec 2022	Coordinate Field offičer Client	0.890942 108.973.125 Shobari & Tim	
Dep (m	ith i)	qc (kg/cm ²)	qc+qf (kg/cm2)	af (kg/cm2)	fs (kg/cm2)	Fđ (kg/cm)	TFd (kg/cm)	Rf (%)	Est.Soil Type
0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
	0.20	1.0	1.5	0.50	0.04	0.84	0.84	4.19	clay
	0.40	1.5	2.5	1.00	0.08	1.68	2.52	5.59	clay
	0.60	1.0	1.5	0.50	0.04	0.84	3.35	4.19	clay
	0.80	1.0	1.5	0.50	0.04	0.84	4.19	4.19	clay
1.00		1.5	2.5	1.00	0.08	1.68	5.87	5.59	clay
	1.20	2.0	3.0	1.00	0.08	1.68	7.55	4.19	clay
	1.40	2.5	3.5	1.00	0.08	1.68	9.22	3.35	clay
	1.60	2.0	3.0	1.00	0.08	1.68	10.90	4.19	clay
	1.80	2.5	3.5	1.00	0.08	1.68	12.58	3.35	clay
2,00	-	2,5	3,5	1,00	0,08	1,68	14,26	3,35	clay
	2,20	3,5	5,5	2,00	0,17	3,35	17,61	4,79	clay
	2,40	3,0	5,0	2,00	0,17	3,35	20,96	5,59	clay
	2,60	4,0	6,0	2,00	0,17	3,35	24,32	4,19	clay
	2,80	5,0	7,0	2,00	0,17	3,35	27,67	3,35	ciay
3,00		4,5	6,5	2,00	0,17	3,35	31,03	3,73	clay
	3,20	6,0	8,0	2,00	0,17	3,35	34,38	2,80	sand
	3,40	5,0	7,0	2,00	0,17	3,35	37,73	3,35	clay
	3,60	4,5	6,5	2,00	0,17	3,35	41,09	3,73	clay
	3,80	3,0	5,0	2,00	0,17	3,35	44,44	5,59	clay
4,00	0.85%	3,0	5,0	2,00	0,17	3,35	47,80	5,59	clay
101102-1	4,20	3,5	5,5	2,00	0,17	3,35	51,15	4,79	clay
	4,40	6,0	9,0	3,00	0,25	5,03	56,18	4,19	clay
	4,60	7,0	10,0	3,00	0,25	5,03	61,21	3,59	clay
	4,80	9,0	13,0	4,00	0,34	6,71	67,92	3,73	clay
5,00		10,0	15,0	5,00	0,42	8,39	76,31	4,19	clay
	5,20	15,0	20,0	5,00	0,42	8,39	84,69	2,80	sand
_	5,40	13,0	18,0	5,00	0,42	8,39	93,08	3,23	clay
	5,60	12,0	17,0	5,00	0,42	8,39	101,46	3,49	clay
	5,80	20,0	30,0	10,00	0,84	16,77	118,23	4,19	clay
6,00	mannen	25,0	36,0	11,00	0,92	18,45	136,68	3,69	clay
	6,20	20,0	30,0	10,00	0,84	16,77	153,45	4,19	clay
	6,40	85,0	120,0	35,00	2,93	58,70	212,15	3,45	clay
	6,60	110,0	155,0	45,00	3,77	75,47	287,62	3,43	clay
	6,80	155,0	250,0	95,00	7,97	159,32	446,94	5,14	clay

Penetration Test Results Using the Sondir Tool (CPT. 02)

PENVELIDIKAN	TANAH SURSI	ENCE PENAHAN	TANAH				No	CPT
FERTELEVINAN	TANAN SUDJIL	ENGE FEMARAN	Taban					2
LN. A. YANI, GG.	BATU MAS, KO	TA SINGKAWAN	G, KALIMANTAN B	ARAT			0	12
Cone Type/ID Cone Diameter (cn Sleeve Diameter (c Sleeve Length (cm	n) (m))	Bi-cone 3,535 3,584 10,395	Elevation (m) Stopped at depth (Ground water leve Testing Date	(m) H (m)	- -7,4 -0,50 5 Dec 2022	Coordinate Field officer Client	0.891086 108.973.086 Shobari & Tim	
Depth (m)	qc (kg/cm ²)	qc+qf (kg/cm2)	qf (kg/cm2)	fs (kg/cm2)	Fd (kg/cm)	TFd (kg/cm)	Rf (%)	Est.Soil Type
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.20	1.5	2.5	1.00	0.08	1.68	168	5.59	clay
0.40	15	2.5	1.00	0.08	1,68	3.35	5.59	clay
0.60	1.0	1.5	0.50	0.04	0.84	4.19	4.19	clay
0.80	1.0	1.5	0.50	0.04	0.84	5.03	419	clay
1.00	2.0	3.0	1.00	0.08	1.68	6.71	419	clay
1.20	2.0	3.0	1.00	0.08	1.68	8.39	4.19	clay
1.40	2.5	3.5	1.00	0.08	1.68	10.06	3.35	clay
1,60	2,0	3,0	1,00	0.08	1.68	11.74	4.19	clay
1,80	2,0	3,0	1,00	0,08	1,68	13,42	4,19	clay
2.00	2,5	3,5	1,00	0,08	1,68	15.09	3,35	clay
2,20	3,0	5,0	2,00	0,17	3,35	18,45	5,59	clay
2,40	3,5	5,5	2,00	0,17	3,35	21,80	4,79	clay
2,60	2,5	3,5	1,00	0,08	1,68	23,48	3,35	clay
2,80	4,0	6,0	2,00	0,17	3,35	26,83	4,19	clay
3,00	5,0	7,0	2,00	0,17	3,35	30,19	3,35	clay
3,20	5,5	7,5	2,00	0,17	3,35	33,54	3,05	clay
3,40	6,0	9,0	3,00	0,25	5,03	38,57	4,19	clay
3,60	8,0	12,0	4,00	0,34	6,71	45,28	4,19	clay
3,80	7,0	10,0	3,00	0,25	5,03	50,31	3,59	clay
4,00	6,5	10,0	3,50	0,29	5,87	56,18	4,52	clay
4,20	8,0	12,0	4,00	0,34	6,71	62,89	4,19	clay
4,40	10,0	15,0	5,00	0,42	8,39	71,28	4,19	clay
4,60	13,0	18,0	5,00	0,42	8,39	79,66	3,23	clay
4,80	11,0	16,0	5,00	0,42	8,39	88,05	3,81	clay
5,00	15,0	20,0	5,00	0,42	8,39	96,43	2,80	sand
5,20	20,0	30,0	10,00	0,84	16,77	113,20	4,19	clay
5,40	13,0	18,0	5,00	0,42	8,39	121,59	3,23	clay
5,60	15,0	20,0	5,00	0,42	8,39	129,97	2,80	sand
5,80	25,0	35,0	10,00	0,84	16,77	140,75	3,35	clay
5,00	20,0	30,0	10,00	0,84	16,//	163,52	4,19	ciay
6,20	15,0	20,0	5,00	0,42	8,39	1/1,90	2,80	sand
6,40	15,0	20,0	5,00	0,42	8,39	180,29	2,80	sand
6,60	25,0	30,0	11,00	0,92	18,45	198,/4	3,09	ciay
6,80	30,0	42,0	12,00	1,01	20,13	218,86	3,35	clay
7,00	45,0	65,0	20,00	1,08	33,54	252,40	3,/3	ciay
7,20	120,0	165,0	+5,00	3,77	150.22	327,87	5,14	clay
7,40	155,0	230,0	95,00	1,91	137,32	407,19	3,14	ciay
7,60								
7,80								

Calculation Wall Cantilever Retaining Wall

Presentation of Land Data

Soil parameters results penetration test data correlation use tool sondir at locations CPT.01 and CPT.02 can be done seen in Table 2 below this.

Depth (m)	N-SPT	c'	ф	γ
1-5	21	12.6	25	18
5-12	47	28.3	29	22
Note:				

Table 2. Soil Parameters	Result of SPT Data Correlation
--------------------------	--------------------------------

MAT = 0.5 m

Dimensions Wall Soil Retaining

a. Construction Design Wall Land Retaining (DPT)

H =	4.5	m	a =	0.5	m
H1 =	0.5	m	B =	3.5	m
H2 =	3,4	m	B1 =	1.0	m
H3 =	0.6	m	B2 =	1.1	m
D =	1.5	m	B3 =	1.4	m

b. Land and Construction Material Data

Layer	1:
-------	----

$\gamma 1 =$	18	kN /m³			
$\Phi 1 =$	25	0			
c1 =	12.6	kN /m^3			
$\gamma w =$	9.81	kN /m^3			
Bj Concrete =	24	kN /m^3			
Even Load =	2	$kN \ /m^2$			
Layer 2:					
$\gamma 2 =$	22	kN /m^3			
$\phi 2 =$	29	0			
c2 =	28.3	kN /m^3			
fc' =	30	Mpa	=	30,000	kN /m²
fy =	400	Mpa	=	400,000	kN /m²

3.3.3. Calculating Moments Due to Vertical Force

Calculation moment consequence vertical force can seen in Table 3 below this.

No.	Area	Weight/unit length (kN	Arm moment from point	Moments
Sections	(m²)	/m)	O (m)	(kN -m/m)
1	0.700	12,600	2,800	35,280
2	4,760	38,984	2,800	109,156
3	1,950	46,800	1,850	86,580

Table 5. Calculation of Moment Due to Ventical Force
--

Journal of Civil Engineering and Vocational Education

4	1,170	28,080	1,400	39,312
5	2,100	50,400	1,750	88,200
6	1,400	2,800	2,800	7,840
	$\Sigma v =$	179,664	$\Sigma Mv =$	366,368

Calculation Ground Pressure

a. Active Earth Pressure

 $Ka = tan^2 (45 - \frac{\varphi}{2})$ = 0.334

Table 4. Active Soil Pressure

No. Sections	Pressure (kN)	Arm moment from point O (m)	Moment (kN -m/m)
Pa1 3,006		2,250	6,764
Pa2 0.752		4,167	3,131
Pa3	12,024	2,000	24,048
Pa4	21,884	1,333	29,178
Pa5	78,480	1,333	104,640
$\Sigma Pa =$	116,145	$\Sigma Mha =$	167,761

b. Passive Earth Pressure

 $Kp = tan^2(45 + \frac{\varphi}{2})$ = 1.583

Table 5. Passive Earth Pressure

No. Sections	Pressure (kN)	Arm moment from point O (m)	Moment (kN -m/m)
Рр	32,056	0.500	16,028
$\Sigma Pp =$	32,056	ΣMhp =	16,028

$$\Sigma H = \Sigma Pa - \Sigma Pp$$

= 84,089 kNm
$$\Sigma Mhtotal = \Sigma mha - \Sigma mhp$$

151,733 kNm

Analysis of Stability of External Forces

 $qu = c'_2 \cdot Nc \cdot Fcd \cdot Fci + q \cdot Nq \cdot Fqd \cdot Fqi + 0,5 \cdot \gamma_2 \cdot B' \cdot N_\gamma \cdot F\gamma d \cdot F\gamma i$ $q = \gamma_2 . D$ = 33 kN /m² B' = B - 2e= 2,389 mFor ϕ_2 = 29° So, Nc = 34.24 Nq = 19.98 = 16.18 Nγ_ $= 1 + 2 \tan \phi'_{2} (1 - \sin \phi'_{2})^{2} \left(\frac{D}{B'}\right)$ Fqd = 1.532 Fγd = 1 $= \frac{F_{qd}}{1 - F_{qd}}$ Fcd = 1.560 = (1 Fci = Fqi $\Psi = \frac{1}{\tan^{-1}\left(\frac{\Sigma H}{\Sigma V}\right)}$ = 25,081= 0.922 Fci = Fqi $F\gamma i = (1$ = 0.018 qu = 2334.311 kΝ $FS_{Bearing \ Capacity} \quad q_u$ = 23,296 ➢ 3 (Aman)

Analysis of Stability of Internal Forces

Review Piece A-A' (Middle of Upright Wall) Data: H = 2.3 m H2 = 1.8 m b2 = 0.3 m H1 = 0.5 m b1=0.4 m B = 0.7 mCount Active Earth Pressure Ka= 0.334

	1 u	ole of metric boll i lessure result)
No. Sections	Pressure (kN)	Arm moment from point A (m)	Moment (kN - m/m)
Pa1	1,536	1,150	1,767
Pa2	0.752	1,967	1,478
Pa3	9,739	0.900	8,765

Pa4	4,431	0.600	2,659
Pa5	15,892	0.600	9,535
$\Sigma Pa =$	32,351	$\Sigma Ma =$	24,204

Calculating Construction Weight and Moment

|--|

No. Sections	Area (m²)	Weight/unit length (kN /m)	Arm moment from point A (m)	Moment (kN -m/m)
1	0.920	22,080	0.480	10,598
2	0.322	7,728	0.187	1,443
	$\Sigma v =$	29,808	$\Sigma MR =$	12,041

Review Against Press

 σ_{tekan} $\sum V \sum M$ $= 201.667 \text{ kN /m}^2$ $\sigma_{tekan} > \sigma_{izin}$ $2,667 \text{ }01 > 13,500 \quad (Safe)$

Review Against Pull

 σ_{tarik} $\sum V \sum M$ $= -113.996 \text{ kN /m}^2$ $\sigma_{tarik} > \sigma_{izin}$ -113.996 > 2,738,613 (Safe)

Review Against Shear

 τ_{geser} 3 ΣPa = 31.027 kN /m² $\tau_{geser} > \tau_{izin}$ 31,027 > 497,930 (Safe)

Review B-B' Cut (Between Vertical Wall and Base Plate) Data: H = 3.9 m H2= 3.4 mb2= 0.6 m

No. Sections	Pressure (kN)	Arm moment from point B (m)	Moment (kN - m/m)
Pa1	2,605	1,950	5,080
Pa2	0.752	3,567	2,680
Pa3	34,749	1,700	59,074
Pa4	15,811	1,133	17,919
Pa5	56,702	1,133	64,262

Table 8. Calculation Results Active Earth Pressure

Journal of Civil Engineering and Vocational Education

 $\Sigma Pa = 110,619$

 Σ Ma = 149,016

Count Passive Earth Pressure Kp = 1.583

Table 9. Passive Soil Calculation Results

No. Sections	Pressure (kN)	Arm moment from point B (m)	Moment (kN - m/m)
Рр	32,056	0.500	16,028
ΣPp =	32,056	$\Sigma Mp =$	16,028

 $\Sigma Mo = \Sigma Ma - \Sigma Mp$

= 132,988

Calculating Construction Weight and Moment

Table 10. Calculation Results of Construction Weight and Moment

No. Sections Area (m ²)		Weight/unit length (kN /m)	Arm moment from point B (m)	Moment (kN -m/m)
1	1,950	46,800	0.850	39,780
2	1,170	28,080	0.400	11,232
	$\Sigma v =$	74,880	$\Sigma MR =$	51,012

Review Against Press

 $\frac{\sigma_{tekan}}{\sum V} \sum M = 474.564 \text{ kN/m}^2$

 $\sigma_{tekan} > \sigma_{izin}$ 474,564 > 13,500 (Safe)

Review Against Pull

 $\sigma_{tarik} \sum_{\substack{\sum V \\ \sigma_{tarik} > \sigma_{izin}}} \sigma_{izin} = -338.418$

Review Against Shear

 τ_{geser} = 38.678 kN /m² τ_{geser} > τ_{izin} 38,678 > 497,930 (Safe)

Review Pieces C-C' and D-D' (Base Plate)

Data: qmax = 100.203 kN /m² qmin = 2.462 kN /m² X3 = qmax - qmin = 97.741 kN /m² X1 = (B3/B) x X 3 = 39.096 kN /m² X2 = (B2 +B3/B) x X3 = 69.815 kN /m²

= qmin + X1 = 41.559 kN /m² q1 = qmin + X2 = 72.277 kN /m² q2 Wtoe = 41.4 kN /m² Wheel = 51 kN /m² Pressure Against Broken Toe and Heel $h1 = qmax - Wtoe = 58.803 \text{ kN} / \text{m}^2$ $h3 = q_2^1$ - Wheel = -9.687 kN /m² Moment at Cross Section CC' D = 1/2 (h1 + h2) B1 = 44.840 kN /m² $M = 24.747 \text{ kN} / \text{m}^2$ $W = 1/6.b.h^2 = 0.167 m^3$ **Review Against Pull** $\sigma_{Tarik} M$ = 148.484 kN /m² $\sigma_{tarik} > \sigma_{izin}$ 148,484 > 2,738,613 (Safe) **Review Against Shear** τ_{geser} = 67,260 kN /m² D 3 $\tau_{geser} \stackrel{-}{>} \tau_{izin}$ 67,260 > 497,930 (Safe) Latitudinal Force on Section DD' D = 1/2 (h3 + h4) B13= 40.930 kN /m² Moment at Cross Section DD' M=35.037 kN /m 2 $W = 1/6.b.h^2 = 0.233 m^3$ **Review Against Pull** σ_{Tarik} = 150.157 kN /m² М $\sigma_{tarik} > \sigma_{izin}$ 150,157 > 2,738,613 (Safe) **Review Against Shear** τ_{geser} = 43.854 kN/m² D 3 $\tau_{geser} \stackrel{-}{>} \tau_{izin}$ 43,854 > 497,930 (Safe) **Reinforcement in Construction Soil Retaining Reinforcement Wall** Data: fc' = 30 Mpa D principal = 16 mm= 400 MPa Shrinkage fy = 1000 mmb

h2 = q2 - Wtoe = 30.877 kN /m 2

h4 = qmin - Wheel = - 48.784 kN /m

b = 1 Reviewed = 10 mm

Reinforcement Tree Minimum Wall Thickness (hmin) = 390 mmBlanket Thickness (s) = 75 mmWall Thickness Effective (d) = 417 mm**Barrier Ratio Reinforcement** ρb = 0.033 $\rho min = 0.0035$ $\rho max = 0.024$ Moments On the Wall Vertical Mmax = 149.016 kN / mMn= 186.269 kN /m $Rn = 1.071 \text{ kg/mm}^2$ m= 15.686 Ratio Reinforcement (ρ) =0.0027 Ratio reinforcement used (ρ) = 0.0035 Reinforcement Area Necessary (As necessary) As necessary = ρ .bd = 1,459.5 mm² = As/a = 8 pieces Reinforcement (n) Reinforcement Distance (S) = 125 mm= 100 mmSo use: Reinforcement principal = 16 mmDistance between reinforcement = 100 mm**Reinforcement Shrink** Reinforcement Area Necessary (As necessary) As necessary = $0.002 \text{ x hmin xb} = 780 \text{ mm}^2$ = As/a = 10 pieces Reinforcement (n) Reinforcement Distance (S) = 100mm = 100 mmSo use: Reinforcement shrinkage = 10 mmDistance between reinforcement = 100 mm**Reinforcement Base Plate** Data: fc' = 30 MpaD principal = 16 mm= 400 MPa Shrinkage fy = 10 mm= 1000 mmb Reviewed **Reinforcement Tree** Minimum Wall Thickness (hmin) = 350 mm

Blanket Thickness (i) = 75 mm Wall Thickness Effective (d) = 517 mm Barrier Ratio Reinforcement $\rho b = 0.033$ $\rho min = 0.0035$ $\rho max = 0.024$ Moment On Base Plate Mmax = 35.037 kN /m Mn= 42.796 kN /m

 $Rn=1.164 \text{ kg/mm}^2$ m= 15.686 Ratio Reinforcement (ρ) =0.000411 Ratio reinforcement used (ρ) = 0.0035 Reinforcement Area Necessary (As necessary) As necessary = ρ .bd = 1,809.5 mm² = As/a = 9 pieces Reinforcement (n) Reinforcement Distance (S) = 111.111 mm= 100 mmSo use: Reinforcement principal = 16 mmDistance between reinforcement = 100 mm**Reinforcement Shrink** Reinforcement Area Necessary (As necessary) As necessary = $0.002 \text{ x} \text{ hmin xb} = 700 \text{ mm}^2$ Reinforcement (n) = As/a= 9 pieces Reinforcement Distance (S) = 111.111 mm= 100 mmSo use: Reinforcement shrinkage = 10 mmDistance between reinforcement = 100 mm

Analysis Wall Cantilever Retaining Wall _

The technical data of the cantilever wall that will be input to plaxis is as follows:

Parameter	Symbol	Layer 1	Layer 2	DPT	Unit
Matarial models	Modal	Mohr	Mohr	Linear	
Waterial models	Model	Coulomb	Coulomb	Elastic	-
Type behavior	Туре	drained	drained	Non Porous	-
Soil weight dry	Yunsat	11,405	12,337	24	kN /m3
Soil weight wet	Ƴsat	16,305	17,185	-	kN /m3
Horizontal permeability	Kx	1x10^7	1x10^7	0	m/day
Permeability Vertical	Ку	1x10^7	1x10^7	0	m/day
Young's Modulus	Eref	30000	50000	2.524x10^7	kN/m2
Poisson numbers	v	0.4	0.4	0.15	-
Cohesion	с	12.6	28.3	-	kN/m2
Corner swipe	φ	25	29	-	0
Corner dilatancy	ψ	0	0	-	0

Table 11. Plaxis Input Data

EISSN: 2622-6774 Vol 10 No.3 September 2023 http://cived.ppj.unp.ac.id/index.php/CIVED

1. Deformed Mesh

2. Existing Image an an na ka an 240 160 -inir ---200 and the state of t AMARINA CO. Finance of a department of the second PENYELIDIKAN TANAH SUBSIDENCE PENAHAN TANAH PLAXIS 128 31/07/23 Koshyoki Kabuto, Japa PLAXIS PENYELIDIKAN TANAH SUBSIDENCE PENAHAN TANAH PLAXIS OPT PLAXIS pls 31/07/2023 PICATO Koshiyoki Kabuto, Japan Koshiyoki Kabulo, Japan

3. Calculate results

			PLAX	S - Finite Ele	ment Code for S	oil and Rock	Analyses				
Project descript	ion : PE	NYELIDIKAN	TANAH SUBSIDENCE	PENAHAN'	TANAH						PLAXIS 8.0
User name	: Ko	xhiyoki Kabuto	Japan								
Project name	: DF	T PLAXIS								Date :	31/07/2023
Output	: Ca	lculation inform	ation						Step: 12	6	Page : 1
Otra Infe											
Step Into											
Step 126 of 126 PLASTIC STEP			Increm	nental Multiplik	ers		2,000 0,000				
Prescribed disple Load system A	acements		Mdisp Miced	A:	0,000		5-Mcis 5-Moa	p: dA:	1,000		
Load system B Soil weight			Mweig	ht:	0,000		5-Mile	ight	1,000		
Acceleration			Macoa	¢.	0,000		∑-Mac x-Mat	celt	0,000		
Strenght reduction	on factor		Increm	ent:	0,000		End tin	ne:	150,000		
Staged construct	tion										
Active proportion	total area		Marea	1	0,000		<u>x</u> Mare	8:			1,000
Active proportion	of stage		Mstag	e:	0,000		∑Msta	ge :			0,000
			PLAX	S - Finite Ele	ment Code for S	oil and Rock	Analyses				
Project descript	ion : PE	NYELIDIKAN	TANAH SUBSIDENCE	E PENAHAN	TANAH						PLAXIS 8.0
User name	: Ko	xhiyoki Kabuto	Japan								
Project name	: DF	PT PLAXIS								Date :	31/07/2023
Output	: Ca	lculation inform	nation						Step : 12	6	Page : 2
Tunnets			Contra	action tunnel A	4		Contra	ction tunnel B	1		
Input value [%]			N/A				N/A				
Realised value [*	%•]		N/A				N/A				
Forces							Conso	lidation			
ForceX		0,000	kN/m				Realis	ed Pmax :	27,846		kN/m ²
ForceY		0,000	kN/m		11						
PLASTIC STEP											
Iter. G No. E	lobal	Plastic Points	Plastic Cap + Hard. points	Inacc. Pl. pts.	Plastic Intf. pts.	Inacc. Intf. pts.	Apex & Tension	Inacc. Apx. pts.			
	0.005	585	0	550	0	0	51	51			
2	0,005	565	ŏ	40	ŏ	õ	51	22			

Koshiyoki Kabulo, Japar

4. Horizontal Displacements (Ux)

5. Horizontal Incremental Displacements (dUx) MR

1.0

100

1.00

5. Total Displacements (Utot) dUtot)

8. Vertical Displacements (Uy)

Total Incremental Displacements (

PENYELIDIKAN TANAH SUBSIDENCE PENAHAN TANAH

9. Vertical Displacements (Uy)

7.

CONCLUSION

Condition wall retainer land experienced landslides because the soil conditions were classified as having low mechanical properties. Realization of slopes with reinforced walls Cantilevers are considered safer because they have the lowest shear and subsidence values and meet all slope stability requirements, namely shear resistance. 1.251 > 1.5 (Safe), against

rolling is 2, 415 > 2 (Safe) and *bearing capacity* 0.555 < 0.583. D16-100 main reinforcement and D10-100 shrinkage reinforcement are used in cantilever retaining wall structures, D16-150 main reinforcement and D10-100 shrinkage reinforcement are used in base plates.

REFERENCE

- [1] Sundari, W., & Krisnasiwi, IF (2021). P influence Physical and Mechanical Properties Testing Clay For Analysis of Slope Safety Factors Using the M ohr Coulomb Method on the 40 P etuk Outer Ring Road Section 1 K subdistrict Kolhua Kupang City . _ *Journal of Technology*, *15* (2), 31-35.
- [2] Hardiyatmo, HC (20 10). Soil mechanics II. Yogyakarta: Gadjah Mada University Press
- [3] Fernandes, J.D. (2019). *Study* _ *Coastal Reclamation Slope Stability With Use Geotextiles* _ *As Soil Strengthening* (Doctoral dissertation, Narotama University).
- [4] <u>https://regional.kompas.com/read/2022/03/31/211603078/profil-kota-singkawang</u>, accessed December 20, 2022.
- [5] <u>https://pontianak.tribunnews.com/2022/08/30/bencana-banjir-dan-longsor-di-singkawang-sutarmidji-buat-terkait-saluran-dan-permukiman-di-bukit</u>, accessed December 20, 2022.
- [6] <u>https://www.antaranews.com/foto/3084969/bencana-tanah-longsor-di-singkawang</u>, accessed December 20, 2022.
- [7] Irina, F. (2017). Applied Research Methods . _ Yogyakarta: Parama Ilmu
- [8] Abdurrozak, MR (2017). The Influence of Ground Water Level Conditions on the Stability of Road Slopes with Retaining Walls (Case Study of the Banjarnegara-Karangkobar Road Kilometer 77, Banjarnegara Regency, Central Java Province).