

Analisis Indeks Kinerja Jaringan Irigasi Studi Kasus Daerah Irigasi di Kabupaten Solok

Yayan Oktiawan^{1*}, Darwizal Daoed², Nurhamidah³

^{1,2,3}Teknik Sipil, Fakultas Teknik Unversitas Andalas, 25175, Indonesia *Corresponding author, e-mail: yayanoktiawan17@gmail.com

Received 18th Feb 2023; Revision 11th March 2023; Accepted 25th March 2023

ABSTRAK

Produksi padi di Sumatera Barat pada tahun 2021 mampu mengahasilkan padi sebanyak 1,317 juta ton dengan luas area persawahan 273.392 hektar menyebar diseluruh Kabupaten dan Kota di Sumatera Barat, salah satunya Kabupaten Solok yang merupakan kabupaten yang paling banyak produksi padi tiap tahunnya, pada tahun 2018 sampai 2021 produksi padi di Kabupaten Solok mengalami defisit atau menurunnya produksi padi, oleh karena itu perlu dilakukan upaya penilaian atau evaluasi sarana dan prasarana jaringan irigasi untuk persawahan, apakah turunnya produksi padi disebabkan oleh kinerja fisik jaringan irigasi yang kurang baik, penilaian indeks kinerja fisik jaringan irigasi mengacu pada peraturan Menteri Pekerjaan Umum dan Perumahan Rakyat nomor 12/PRT/M 2015, tentang eksploitasi dan pemeliharaan jaringan irigasi, dengan melakukan evaluasi terhadap fisik jaringan irigasi serta melakukan modifikasi penilian indeks kinerja, kategori indeks kinerja terbagi menjadi 5 kategori, sangat baik, baik, sedang, buruk dan sangat buruk. Hasil penilian serta evaluasi indek kinerja fisik jaringan irigasi pada 9 daerah irigasi di Kabupaten solok terdapat 4 daerah irigasi dengan inilai indeks kinerja rendah pada kategori sedang, Daerah Irigasi Batang Lembang 59,57%, Daerah Iirgasi Paneh Gadang 59,25%, Daerah Irigasi Muaro Danau 59,02% dan Daerah Irigasi Bandar Sapan Kayu Manang 47,64%, rendahnya nilai indeks kinerja fisik jaringan irigasi menjadikan 3 daerah irigasi tersebut sebagai proritas perbaikan pada fisik jaringan irigasi.

Kata Kunci: Daerah Irigasi; Evaluasi; Penilian; Indeks Kinerja; Prioritas.

ABSTRACT

Paddy production in West Sumatra in 2021 is capable of producing as much as 1.317 million tons of rice with an area of 273,392 hectares of rice fields spread across all regencies and cities in West Sumatra, one of which is Solok Regency which is the district with the most rice production each year, from 2018 to 2021 Rice production in Solok Regency has a deficit or decreased rice production, therefore it is necessary to evaluate or evaluate irrigation network facilities and infrastructure for rice fields, whether the decrease in rice production is caused by poor physical performance of irrigation networks, the assessment of the physical performance index of irrigation networks refers to in the regulation of the Minister of Public Works and Public Housing number 12/PRT/M 2015, concerning the exploitation and maintenance of irrigation networks, by evaluating the physical irrigation networks and modifying the performance index assessment, the performance index categories are divided into 5 categories, very good, good, sedan g, bad and very bad. The results of the assessment and evaluation of the physical performance index of irrigation networks in 9 irrigation areas in Solok Regency, there are 4 irrigation areas with low performance index values in the medium category, Batang Lembang Irrigation Area 59.57%, Paneh Gadang Irrigation Area

http://ejournal.unp.ac.id/index.pnp/cived/index

59.25%, Muaro Irrigation Area Lakes 59.02% and Bandar Sapan Kayu Manang Irrigation Area 47.64%, the low value of the physical performance index of irrigation networks makes these 3 irrigation areas a priority for improving the physical irrigation network.

Keywords: Irrigation Area; Evaluation; Assessment; Performance Index; Priority.

Copyright © Yayan Oktiawan, Darwizal Daoed, Nurhamidah

This is an open access article under the: https://creativecommons.org/licenses/by/4.0/

PENDAHULUAN

Jaringan Irigasi merupakan satu kesatuan bangunan yang berfungsi untuk memudahkan penyaluran air untuk kepentingan persawahan yang terdiri dari bangunan utama, saluran dan bangunan pelengkap. Salah satu bagian dari jaringan irigasi yaitu bendung irigasi, bendung irigasi merupakan fisik dari bagian dari jaringan irigasi yang didesain melintang sungai yang diperuntukan menaikkan muka air, sehingga air dapat mengalir dari tempat yang tinggi ke tempat rendah guna untuk kepentingan irigasi. Bangunan bendung dibuat dari pasangan batu kali, beton maupun beronjong. [1]

Fungsi jaringan irigasi merupakan satu faktor yang sangat berpengaruh terhadap pemanfaatan air sebagai kelangsungan hidup bagi petani dalam bercocok tanam serta pemanfaatan jaringan irigasi untuk keperluan lainnya. Penilaian dan Evaluasi kinerja jaringan irigasi merupakan upaya untuk menimalisir terjadinya kegagalan pada bendung serta jaringan irigasi, namun dalam perkembangan kinerja jaringan irigasi telah mengelami penurunan yang disebabkan oleh beberapa faktor antara lain perbaikan dan pemeliharaan jaringan yang tertunda, kerusakan yang disebabkan oleh manusia dan kerusakan alam, dari faktor tersebut menyebabkan berkurangnya fungsi bendung untuk kepentingan irigasi dan kerusakan tersebut berdampak pada masyarakat petani pemakai air.[2] Untuk menimalisir terjadinya kegagalan pada jaringan irigasi perlu dilakukan suatu langkah ataupun upaya penilaian kinerja bendung irigasi, sebagai suatu bentuk mengurangi dampak kerugian dan tidak efektinya pemanfaatan jaringan irigasi mulai dari bendung sebagai pensuplai air, sampai ke area persawahan.

Sehubungan dengan uraian penjelasan tersebut, pemanfaatan jaringan irigasi untuk persawahan di Sumatera Barat mampu menghasilkan produksi padi pada tahun 2021 dengan luas panen padi sebesar 272.392 hektar dengan produksi sebesar 1,317 juta ton dan menyebar diseluruh kabupaten kota di Sumatera Barat, salah satunya Kabupaten Solok produksi padi tahun 2021 sebanyak 160.964 ton. Produksi hasil pertanian khusunya produksi padi Kabupaten Solok mengalami defisit sejak tahun 2018 sampai 2021, pada tahun 2018 produksi padi 374.210,5 ton dengan luas panenen 65.663,4 hektar, tahun 2019 sebanyak 369.153,3 ton dengan luas panen 65.689,5 hektar, tahun 2020 sebanyak 362.161,8 ton dengan luas panen 64.160,6 hektar dan tahun 2021 sebnyak 160.964 ton dengan luas panen 32.554. [3]

Produksi padi di Kabupaten Solok tiga tahun terakhir mengalami defisit, tentu banyak hal penyebab terjadinya defisit produksi padi, baik disisi sosial, pengelolaan pertanian serta infrastruktur yang mendukung, namun disini penulis akan meninjau infrastruktur fisik jaringan irigasi yang ada di Kabupaten Solok, apakah penurunan produksi padi di Kabupaten Solok disebabkan oleh infrastruktur seperti irigasi untuk pertanian yang kurang baik. Untuk mengetahui kinerja jaringan irigasi maka diperlukan peninjauan kinerja jaringan irigasi, pedoman penilian kinerja jaringan irigasi melalui Peraturan Menteri Pekerjaan Umum dan

http://ejournal.unp.ac.id/index.php/cived/index

Perumahan Rakyat no. 12/PRT/M/2015 Tentang eksploitasi dan pemeliharaan jaringan irigasi, penilaian indeks kinerja irigasi sangat diperlukan untuk mengetahui kualitas layanan jaringan irigasi. Penilaian kinerja jaringan irigasi memiliki peranan yang penting dalam suatu sistem jaringan irigasi, jaringan irigasi yang baik dan efektif akan memberikan kinerja jaringan irigasi yang baik pula, dalam penilaian indeks kinerja jaringan irigasi, maka ada beberapa hal yang perlu diperhatikan seperti kinerja fungsional dan infrastruktur jaringan irigasi, kinerja pelayanan air, kinerja kelembagaan pemerintah dan kinerja kelembagaan petani. [4]

METODE

Proses penelitian ini dibagi menjadi tiga tahapan, yakni mulai dari pengumpulan data berupa data primer dan data sekunder, Wilayah studi pada penelitian ini adalah 9 daerah irigasi di Kabupaten Solok dengan bangunan utama bendung yang merupakan wewenang Dinas Pengelolaan Sumber Daya Air Provinsi Sumatera Barat seperti tabel di bawah ini:

Tabel 1 Daerah Irigasi di Kabupaten Solok

No	Nama D.I (Daerah Irigasi)	Luas Ha
1	Bandar Panjang Silayo	335
2	Bandar Pamujan	190
3	Batang Lembang	750
4	Muaro Danau	1.371
5	Paneh Gadang	1.007
6	Bandar Sapan Kayu Manang	1160
7	Bandar Lawas Sirikam	286
8	Bandar Gadang	1525
9	Bandar Bintungan	1017

Data sekunder adalah data yang diperoleh dari dokumen – dokumen kantor berupa data fisik jaringan irigasi, berdasarkan studi pustaka yaitu Peraturan Menteri No. 12/PRT/M/2015 Operasi dan pemeliharaan Jaringan Irigasi.

Data primer berupa:

- a. Survey Jaringan Irigasi
- b. Data Operasi dan Pemeliharaan, berupa komponen-komponen penilaian kegiatan pemeliharaan jaringan irigasi

Dalam penilitian ini instrument yang digunakan untuk kegiatan penilitian dilapangan sebagai berikut.

- a. Blanko survey indeks kinerja jaringan irigasi
- b. Kamera digital untuk merekam dan menfoto kegiatan dilapangan
- c. Alat ukur

Komponen penilaian sebagaimana yang dimaksud dalam data primer dijelaskan pada tabel 2 dengan standar komponen indeks kinerja irigasi yang terdapat dalam blangko penilaian indek jaringan irigasi PermenPUPR No.12/PRT/2015.

Tabel 2 Komponen penilaian prasarana fisik jaringan irigasi

No.	Komponen	Sub.Komponen	Komponen yang dinilai
1	Bangunan	Bendung	1. Mercu
	Utama		2. Sayap
			3. Lantai Bendung
			4. Tanggul Penutup
			5. Jembatan

		Pintu-pintu bendung dan roda gigi yang dapat dioperasikan Kantong lumpur dan pintu pengurasnya	 Papan operasi Mistar ukur Pagar pengaman Pintu pengambilan Pintu penguras bending Bangunan kantong lumpur baik Kantong lumpur telah dibersihkan Pintu penguras dan roda gigi kantong lumpur telah dibersihkan
2	Saluran Pembawa	Kapasitas tiap saluran cukup untuk membawa debit kebutuhan/rencana maksimum Tinggi tanggul cukup untuk menghindari limpahan setiap saat selama pengoperasian Semua perbaikan	1. Cukup 2. Tidak 1. Cukup 2. Tidak
3	Bangunan pada Saluran Pembawa	saluran telah selesai Bangunan Pengatur (Bagi/Bagi- Sadap/Sadap) lengkap dan berfungsi Pengukuran debit dapat dilakukan dengan rencana pengoperasian D.I. Bangunan Pelengkap berfungsi dan lengkap	Tidak Setiap saat dan setiap bangunan pengatur perlu saluran induk dan sekunder Pada setiap sadap tersier Pada bangunan per (bendung/intake) Pada tiap bangunan (Bagi/Sadap/Bagi-Sadap) Pada setiap sadap tersier Pada saluran induk dan sekunder Pada bangunan syphon, gorong-gorong jembatan talang cross-
		Semua perbaikan telah selesai	gorong, jembatan, talang, cross-drain tidak terjadi sumbatan 1. Perbaikan bangunan pengatur (Bagi/Bagi-Sadap/Sadap) 2. Mistar ukur, skalaliter dan tanda muka air 3. Papan operasi 4. Bangunan pelengkap

4	Saluran	Semua saluran	1. Ada
	Pembuang	pembuang dan	2. Tidak
	dan	bangunannya telah	
	Pelengkapn	dibangun dan	
	ya	tercantum dalam	
		daftar pemeliharaan	
		serta telah diperbaiki	
		dan berfungsi.	
		Tidak ada masalah	1. Ada
		banjir yang	2. Tidak
		menggenangi	
5	Jalan	Jalan masuk ke	1. Baik
	Masuk/Insp	bangunan utama	2. Tidak Baik
	eksi	dalam kondisi baik	
		Jalan inspeksi dan	1. Sudah
		jalan setapak	2. Belum
		sepanjang saluran	
		telah diperbaiki	
		Setiap bangunan dan	1. Ya
		saluran yang	2. Tidak
		dipelihara dapat	
		dicapai dengan	
		mudah	
6	Kantor,	Kantor memadai	1. Ranting/Pengamat
	Perumahan		2. Juru/Mantri
	dan Gudang	Perumahan	1. Ranting/Pengamat
		Memadai	2. Juru/Mantri
		Gudang Memadai	1. Ranting/Pengamat
			2. Juru/Mantri

Penilaian Kinerja fisik jaringan irigasi dilakukan beberapa cara yaitu:

- a. Survey lokasi ke lapangan dan mengumpulkan data fisik atau kerusakan pada jaringan irigasi
- b. Menyusun parameter parameter yang ada pada jaringan irigasi yang akan di kaji.
- c. Menentukan kriteria penilaian jaringan irigasi.
- d. Menentukan indeks kinerja pada setiap parameter parameter yang ditinjau, setelah mendapatkan indeks kinerja didapatkan kriteria penilaian.

Indeks kinerja irigasi bertujuan untuk mengetahui besaran pengaruh layanan jaringan irigasi serta menentukan nilai kinerja jaringan irigasi, untuk menentukan nilai indeks kinerja diperlukan perhitungan Interval Nilai (IN).

Cara umum yang dilakukan untuk mengklasifikasikan Interval Nilai sebagai berikut:

$$\frac{IN = \text{(Nilai Tertinggi - Nilai Terendah)}}{Banyak \ Kategori} \\ \frac{IN = (100 - 0)}{5}$$

IN = 20

Dari perhitungan di atas didapat interval nilai untuk klasifikasi indeks kinerja jaringan irigasi 20. Pengklasifikasian ini dibuat dengan tujuan memudahkan mendapatkan indeks kinerja jaringan irigasi. [5] Klasifikasi indeks kinerja jaringan irigasi dijelaskan pada tabel 4.

Tabel 4 Klasifikasi indeks Kinerja jaringan irigasi

Kategori Indeks Kinerja	Nilai Interval	Tingkat Kerentanan Terhadap Kerusakan
Sangat Baik	80≤IN<100	Tidak rentan terhadap kinerja jaringan irigasi
Baik	60≤IN<80	Agak rentan terhadap kinerja jaringan irigasi
Sedang	40≤IN<60	Sedang terhadap kinerja jaringan irigasi
Buruk	20 ≤IN<40	Rentan terhadap kinerja jaringan irigasi
Sangat Buruk	IN<20	Sangat rentan terhadap jaringan irigasi

Dari tabel di atas kategori dengan nilai terendah menunjukan kondisi sangat rentan sedangkan dengan nilai tertinggi menunjukan kondisi tidak rentan. [6] Untuk melakukan penilaian kinerja jaringan irigasi untuk masing-masing komponen, terlebih dahulu membuat rentang nilai dari kriteria kerusakan pada komponen yang dinilai pada penelitian ini ada 5 tingkatan klasifikasi penilaian jaringan irigasi seperti di pada tabel 5.

Tabel 5 Klasifikasi Penilian kinerja Jaringan irigasi pada setiap komponen

Rentang Nilai	Kriteria Penilian		
Sangat Baik	Permukaan mercu dalam		
80≤IN<100	keadaan baik utuh tidak terdapat lumut atau tanaman, kondisi lapis perkerasan 81 s.d 100%		
Baik	Terdapat permukaan yang mengelupas dan terdapat lumut, kondisi lapis perkerasan 61 s.d 80%		
60≤IN<80			
Sedang	Terdapat retakan pada lapis		
40≤IN<60	perkerasan dan ada bagian yang mengelupas, kondisi lapis perkerasan 41 s.d ≤ 60%		
Buruk	Terdapat banyak lubang dan		
20 ≤IN<40	bagian yang terkelupas, ada retakan dan bocoran kecil, kondisi lapis perkerasan 21 s.d 40 %		
Sangat Buruk	Lapisan perkerasan dalam		
≤20	keadaan rusak berat, ada patahan, penurunan elevasi, dan ada kebocoran, kondisi lapis		
	perkerasan ≤20%		

Klasifikasi indeks kinerja fisik jaringan irigasi pada Peraturan Meneteri Pekerjaan Umum dan Perumahan Rakyat No. 12/PRT/M/2015 terbagi menjadi 4 bagian sedangkan pada penelitian ini, untuk klasifikasi penilaian indeks kinerja jaringan irigasi dibagi menjadi 5, dapat dilihat pada tabel 6.

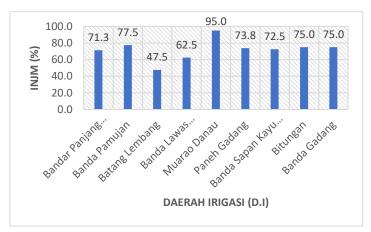
http://ejournal.unp.ac.id/index.php/cived/index

Tabel 6 Perbandingan Indeks Kinerja Jaringan Irigasi berdasarkan PERMEN PUPR dengan penelitian ini.

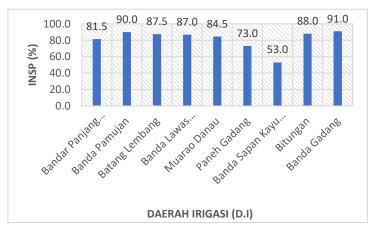
PERMEN PUPR Indeks Kinerja Nilai Interval		Penelitian ini	
		Indeks Kinerja	Nilai Interval
Baik	80 - 100	Sangat baik	80≤IN<100
Cukup	70 – 79	Baik	60≤IN<80
Kurang	55 – 69	Sedang	40≤IN<60
Buruk	< 55	Buruk	20 ≤IN<40
		Sangat Buruk	IN<20

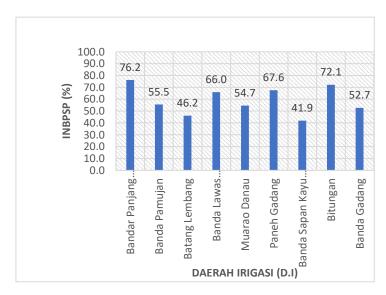
HASIL DAN PEMBAHASAN

Penilaian fisik jaringan irigasi dilakukan dengan meninjau pada setiap komponen yang dinilai dengan menyesuaikan terhadap kriteria penilian, sehingga didapan nilai masing-masing subkomponen. Untuk mendapatkan hasil akhir indeks kinerja fisik jaringan irigasi dilakukan perhitungan menggunakan tabel penilaian indeks kinerja fisik jaringan irigasi permenPUPR No.12/PRT/M/2015, dalam perhitungan indeks kinerja fisik jaringan irigasi terlebih dahulu dilakukan pengelompokan komponen fisik jaringan irigasi yang akan ditinjau, komponen kinerja jaringan irigasi yang ditinjau terbagi menjadi 6 bagian yaitu banguan utama, saluran pembawa, bangunan pada saluran pembawa, saluran pembuang dan pelengkapnya, Jalan inspeksi, kantor perumahan dan gudang. Masing-masing komponen mempunyai sub komponen dan sub komponen mempunyai penilaian masing-masing dengan kriteria tersendiri yang akan dinilai. Kriteria penilaian kinerja fisik jaringan irigasi di nilai secara visual dan peninjauan lapangan dengan melakukan pengecekan, pengukuran kondisi fisik jaringan irigasi. Karena belum ada kategori serta panduan mengenai batasan kriteria penilaian kinerja fisik jaringan irigasi, maka untuk memudahkan penulis dalam melakukan penilian serta evaluasi fisik jaringan irigasi maka dilakukan pengembangan serta modifikasi kriteria dalam menilai, berdasarkan buku Pedoman Penilaian Kondisi Jaringan Irigasi.

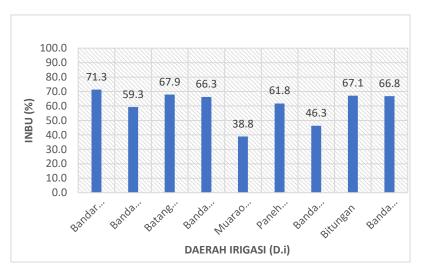

Tabel 7. Hasil Penilaian Indeks Kinerja Jaringan Irigasi.

No	Nama D.I	Indeks Kinerja	Kategori
		Fisik (%)	
1	Bandar Panjang Selayo	67.63	Baik
2	Banda Pamujan	62.56	Baik
3	Batang Lembang	59.97	Sedang
4	Banda Lawas Sirukam	68.90	Baik
5	Muarao Danau	56.71	Sedang
6	Paneh Gadang	59.25	Sedang
7	Banda Sapan Kayu Manang	47.64	Sedang
8	Bitungan	67.47	Baik
9	Banda Gadang	64.51	Baik

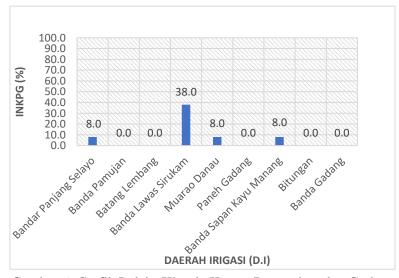

Tabel di atas menjelaskan bahwa dari perhitungan nilai indeks kinerja fisik jaringan irigasi dari 9 daerah irigasi di Kabupaten Solok terdapat 4 daerah irigasi yang memiliki nilai indeks kinerja rendah dalam kategori sedang yaitu daerah irigasi Banda Sapan Kayu Manang dengan nilai indeks kinerja 47.64%, daerah irigasi Muaro Danau 56,71%, daerah irigasi Paneh Gadang 59,25% dan daerah irigasi Batang Lembang 59,57%, rendahnya nilai indeks kinerja fisik jaringan irigasi disebabkan oleh adanya kerusakan pada masing-masing komponen yang dinilai.


Dari hasil pengolahan data menggunakan formulir penilaian indeks kinerja irigasi, diperoleh nilai indeks kinerja masing-masing komponen fisik jaringan irigasi hasil peninjauan dan pengukuran di lapangan pada Daerah Irigasi di Kabupaten Solok. Untuk hasil akhir secara keseluruhan dari 9 D.I dijelaskan pada diagram indeks kinerja fisik jaringan irigasi masing masing komponen pada gambar grafik berikut.

Gambar 1. Grafik Indeks Kinerja Bangunan Utama



Gambar 2. Grafik Indeks Kinerja Saluran Pembawa



Gambar 3. Grafik Indeks Kinerja Bangunan Saluran Pembawa

Gambar 4. Grafik Indeks Kinerja Bangunan Saluran Pembuang

Gambar 5. Grafik Indeks Kinerja Jalan Masuk

Gambar 6. Grafik Indeks Kinerja Kantor Perumahan dan Gudang

http://ejournal.unp.ac.id/index.php/cived/index

KESIMPULAN

Dari hasil evalusi dan penilian indeks kinerja fisik jaringan irigasi menggunakan acuan Peraturan Menteri Pekerjaan Umum dan Perumahan Rakyat No. 12/PRT/M/2015 dengan pengembangan kategori penilaian, pengembangan kategori indeks kinerja fisik jaringan irigasi serta melakukan penilaian langsung pada daerah irigasi di Kabupaten Solok maka didapat hasil dari evaluasi serta penilian indeks kinerja fisik jaringan irigasi Kabupaten Solok dengan nilai indeks 55,69 % berada pada kategori sedang.

Prioritas penanganan perbaikan pada fisik jaringan irigasi pada daerah irigasi yang ditinjau yaitu daerah irigasi Bandar Sapan Kayu Manang indeks kinerja 47,64%, daerah irigasi Muaro Danau 56,71%, daerah irigasi Batang Lembang 59,57%, dan daerah irigasi Paneh Gadang 59,25%, daerah irigasi tersebut berada pada kategori sedang. Komponen-komponen fisik jaringan irigasi yang diproritaskan dalam perbaikan yaitu komponen bangunan utama mercu bendung Daerah Irigasi Pamujan mengelami kerusakan pada tubuh mercu, Mercu bendung Daerah Irigasi Sapan Kayu Manang mengalami kerusakan bahkan hilang dan komponen kantor perumahan dan Gudang, dalam 6 komponen penilaian fisik jaringan irigasi yang diteliti komponen yang memiliki nilai paling rendah yaitu komponen kantor, perumahan dan Gudang. Upaya tindak lanjut untuk memaksimalkan fungsi fisik jaringan irigasi maka diperlukan pemeliharaan dan perbaikan.

REFERENSI

- [1] Mawardi, Moch. Desain Hidraulik Bendung Tetap Untuk Iirgasi Teknis. Bandung: Alfabeta, (2010)
- [2] Pedoman Penilaian Kinerja Bendungan, Jakarta: Direktorat Jendral Sumber Daya Air Kementrian Pekerjaan Umum dan Perumahan Rakyat. (Tidak Dipublikasikan)
- [3] Badan Pusat Statistik Kabupaten Solok [Online].https://solokkab.bps.go.id/publication/2020/04/27/7680eddcac1764236725e3 09/kabupaten-solok-dalam-angka-2020.html
- Departemen Pekerjaan Umum, "(Peraturan Menteri Pekerjaan Umum dan Perumahan [4] Rakyat No 12/PRT/M/2015, 2015)," Eksploitasi dan Pemeliharaan Jar. Irig., vol. 3, p. 2015. [Online]. Available: 2015, http://weekly.cnbnews.com/news/article.html?no=124000.
- D. Daoed, B. Rusman, B. Istijono, A. Hakam, and M. Syukur, "Evaluation of drought [5] vulnerability on watersheds in West Sumatera Province by using Cropwat-8 and GIS," Int. J. Adv. Sci. Eng. Inf. Technol., vol. 8, no. 6, pp. 2443-2449, 2018, doi: 10.18517/ijaseit.8.6.3520.
- B. I. A. A. H. DARWIZAL DAOED, BUJANG RUSMAN, "International Journal.," [6] Pac. Aff., vol. 9, no. 2, pp. 274–279, Jun. 2016, doi: 10.2307/2752507.